LONO1 encoding a nucleoporin is required for embryogenesis and seed viability in Arabidopsis.
نویسندگان
چکیده
Early embryogenesis in Arabidopsis (Arabidopsis thaliana) is distinguished by a predictable pattern of cell divisions and is a good system for investigating mechanisms of developmental pattern formation. Here, we identified a gene called LONO1 (LNO1) in Arabidopsis in which mutations can abolish the first asymmetrical cell division of the zygote, alter planes and number of cell divisions in early embryogenesis, and eventually arrest embryo development. LNO1 is highly expressed in anthers of flower buds, stigma papilla of open flowers, and embryo and endosperm during early embryogenesis, which is correlated with its functions in reproductive development. The homozygous lno1-1 seed is not viable. LNO1, a homolog of the nucleoporin NUP214 in human (Homo sapiens) and Nup159 in yeast (Saccharomyces cerevisiae), encodes a nucleoporin protein containing phenylalanine-glycine repeats in Arabidopsis. We demonstrate that LNO1 can functionally complement the defect in the yeast temperature-sensitive nucleoporin mutant nup159. We show that LNO1 specifically interacts with the Arabidopsis DEAD-box helicase/ATPase LOS4 in the yeast two-hybrid assay. Furthermore, mutations in AtGLE1, an Arabidopsis homolog of the yeast Gle1 involved in the same poly(A) mRNA export pathway as Nup159, also result in seed abortion. Our results suggest that LNO1 is a component of the nuclear pore complex required for mature mRNA export from the nucleus to the cytoplasm, which makes LNO1 essential for embryogenesis and seed viability in Arabidopsis.
منابع مشابه
LONO1 Encoding a Nucleoporin Is Required for Embryogenesis and Seed Viability in Arabidopsis1[C][W][OA]
Early embryogenesis in Arabidopsis (Arabidopsis thaliana) is distinguished by a predictable pattern of cell divisions and is a good system for investigating mechanisms of developmental pattern formation. Here, we identified a gene called LONO1 (LNO1) in Arabidopsis in which mutations can abolish the first asymmetrical cell division of the zygote, alter planes and number of cell divisions in ear...
متن کاملDNA methylation is critical for Arabidopsis embryogenesis and seed viability.
DNA methylation (5-methylcytosine) in mammalian genomes predominantly occurs at CpG dinucleotides, is maintained by DNA methyltransferase1 (Dnmt1), and is essential for embryo viability. The plant genome also has 5-methylcytosine at CpG dinucleotides, which is maintained by METHYLTRANSFERASE1 (MET1), a homolog of Dnmt1. In addition, plants have DNA methylation at CpNpG and CpNpN sites, maintain...
متن کاملIdentification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development.
FUSCA3 (FUS3) is a B3 domain transcription factor that is a member of the LEAFY COTYLEDON (LEC) group of genes. The LEC genes encode proteins that also include LEC2, a B3 domain factor related to FUS3, and LEC1, a CCAAT box-binding factor. LEC1, LEC2, and FUS3 are essential for plant embryo development. All three loss-of-function mutants in Arabidopsis (Arabidopsis thaliana) prematurely exit em...
متن کاملMutations of Arabidopsis thaliana that transform leaves into cotyledons.
We describe mutations of three genes in Arabidopsis thaliana-extra cotyledon1 (xtc1), extra cotyledon2 (xtc2), and altered meristem programming1 (amp1)-that transform leaves into cotyledons. In all three of these mutations, this transformation is associated with a change in the timing of events in embryogenesis. xtc1 and xtc2 delay the morphogenesis of the embryo proper at the globular-to-heart...
متن کاملIdentification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses
AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 160 2 شماره
صفحات -
تاریخ انتشار 2012